The Buildroot user manual

The Buildroot user manual

The Buildroot user manual

Contents

1 About Buildroot
2 Getting Buildroot

3 Using Buildroot
3.1 Configuration and general Usageot e e e e e e e e e e e
32 Offlinebuilds e e
3.3 Building out-of-tree L e e e e e
3.4 Environment variables L. L. e e
3.5 Complying with opensource liCeNnSest i i e e e e e e e e e

3.6 Complying with the Buildroot license L

4 Customization
4.1 Customizing the generated target filesystem
4.2 Customizing the Busybox configuration
4.3 Customizing the uClibc configuration e e e e
4.4 Customizing the Linux kernel configuration L e
4.5 Customizing the toolchain
4.5.1 Using the external toolchain backend
4.5.2 Using the internal Buildroot toolchain backend
453 Using the Crosstool-NG backend

5 Understanding how to rebuild packages

6 How Buildroot works

7 Using the generated toolchain outside Buildroot
8 Using an external toolchain

9 Using ccache in Buildroot

10 Location of downloaded packages

10

11

12

13

15

16

The Buildroot user manual

i

11 Adding new packages to Buildroot 17
11.1 Package direCtory o i i e e e e e e e e e e e 17
11.1.1 Config.infile e e 17

11.1.2 The .mk file 19

11.2 Infrastructure for packages with specific build systems Lo 19
11.2.1 generic-package Tutorial e 19

11.2.2 generic-package Reference L 20

11.3 Infrastructure for autotools-based packages L 24
11.3.1 autotools—packagetutorial e 24

11.3.2 autotools-packagereference i e 24

11.4 Infrastructure for CMake-based packages 25
11.4.1 cmake—-packagetutorial 25

1142 cmake-packagereference e 26

11.5 Manual Makefile e 27
11.6 Gettext integration and interaction with packages Lo o o o 29
11.7 Conclusion o e e e 30

12 Frequently Asked Questions 31
12.1 The boot hangs after Starting network... 0 e e e e e e 31
12.2 module-init-tools fails to build with cannot find -Ic 31

13 Appendix 32
13.1 Makedev syntax documentation L. L e e e e e 32

The Buildroot user manual

Buildroot usage and documentation by Thomas Petazzoni. Contributions from Karsten Kruse, Ned Ludd, Martin Herren and
others.

BU ROOT

Making Embedded Linux Easy

The Buildroot user manual
1/32

Chapter 1

About Buildroot

Buildroot is a set of Makefiles and patches that allows you to easily generate a cross-compilation toolchain, a root filesystem and
a Linux kernel image for your target. Buildroot can be used for one, two or all of these options, independently.

Buildroot is useful mainly for people working with embedded systems. Embedded systems often use processors that are not
the regular x86 processors everyone is used to having in his PC. They can be PowerPC processors, MIPS processors, ARM
processors, etc.

A compilation toolchain is the set of tools that allows you to compile code for your system. It consists of a compiler (in our case,
gcc), binary utils like assembler and linker (in our case, binutils) and a C standard library (for example GNU Libc, uClibc
or dietlibc). The system installed on your development station certainly already has a compilation toolchain that you can use to
compile an application that runs on your system. If you’re using a PC, your compilation toolchain runs on an x86 processor and
generates code for an x86 processor. Under most Linux systems, the compilation toolchain uses the GNU libc (glibc) as the C
standard library. This compilation toolchain is called the "host compilation toolchain". The machine on which it is running, and
on which you’re working, is called the "host system". The compilation toolchain is provided by your distribution, and Buildroot
has nothing to do with it (other than using it to build a cross-compilation toolchain and other tools that are run on the development
host).

As said above, the compilation toolchain that comes with your system runs on and generates code for the processor in your host
system. As your embedded system has a different processor, you need a cross-compilation toolchain - a compilation toolchain
that runs on your host system but generates code for your target system (and target processor). For example, if your host system
uses x86 and your target system uses ARM, the regular compilation toolchain on your host runs on x86 and generates code for
x86, while the cross-compilation toolchain runs on x86 and generates code for ARM.

Even if your embedded system uses an x86 processor, you might be interested in Buildroot for two reasons:

* The compilation toolchain on your host certainly uses the GNU Libc which is a complete but huge C standard library. Instead
of using GNU Libc on your target system, you can use uClibc which is a tiny C standard library. If you want to use this C
library, then you need a compilation toolchain to generate binaries linked with it. Buildroot can do that for you.

* Buildroot automates the building of a root filesystem with all needed tools like busybox. That makes it much easier than doing
it by hand.

You might wonder why such a tool is needed when you can compile gcc, binutils, uClibc and all the other tools by hand.
Of course doing so is possible but, dealing with all of the configure options and problems of every gcc or binutils version
is very time-consuming and uninteresting. Buildroot automates this process through the use of Makefiles and has a collection of
patches for each gcc and binutils version to make them work on most architectures.

Moreover, Buildroot provides an infrastructure for reproducing the build process of your kernel, cross-toolchain, and embedded
root filesystem. Being able to reproduce the build process will be useful when a component needs to be patched or updated or
when another person is supposed to take over the project.

http://www.gnu.org/software/libc/libc.html
http://www.uclibc.org/
http://www.fefe.de/dietlibc/

The Buildroot user manual
2/32

Chapter 2

Getting Buildroot

Buildroot releases are made approximately every 3 months. Direct Git access and daily snapshots are also available, if you want
more bleeding edge.

Releases are available at http://buildroot.net/downloads/.

The latest snapshot is always available at http://buildroot.net/downloads/snapshots/buildroot-snapshot.tar.bz2, and previous snap-
shots are also available at http://buildroot.net/downloads/snapshots/.

To download Buildroot using Git, you can simply follow the rules described on the "Accessing Git" page (http://buildroot.net/-
git.html) of the Buildroot website (http://buildroot.net). For the impatient, here’s a quick recipe:

$ git clone git://git.buildroot.net/buildroot

http://buildroot.net/downloads/
http://buildroot.net/downloads/snapshots/buildroot-snapshot.tar.bz2
http://buildroot.net/downloads/snapshots/
http://buildroot.net/git.html
http://buildroot.net/git.html
http://buildroot.net

The Buildroot user manual
3/32

Chapter 3

Using Buildroot

3.1 Configuration and general usage

Buildroot has a nice configuration tool similar to the one you can find in the Linux kernel or in Busybox. Note that you can (and
should) build everything as a normal user. There is no need to be root to configure and use Buildroot. The first step is to run the
configuration assistant:

$ make menuconfig

to run the curses-based configurator, or

$ make xconfig

or

$ make gconfig

to run the Qt or GTK-based configurators.

All of these "make" commands will need to build a configuration utility, so you may need to install "development" packages for
relevant libraries used by the configuration utilities. On Debian-like systems, the 1ibncurses5—-dev package is required to use
the menuconfig interface, 1ibgt 4—dev is required to use the xconfig interface, and 1ibglib2.0-dev, libgtk2.0-dev
and libglade2-dev are needed to use the gconfig interface.

For each menu entry in the configuration tool, you can find associated help that describes the purpose of the entry.

Once everything is configured, the configuration tool generates a . config file that contains the description of your configura-
tion. It will be used by the Makefiles to do what’s needed.

Let’s go:

$ make
You should never use make —jN with Buildroot: it does not support top-level parallel make. Instead, use the BR2_JLEVEL
option to tell Buildroot to run each package compilation with make -jN.

This command will generally perform the following steps:

* Download source files (as required)

* Configure, build and install the cross-compiling toolchain if an internal toolchain is used, or import a toolchain if an external
toolchain is used

 Build/install selected target packages

http://www.kernel.org/
http://www.busybox.net/

The Buildroot user manual
4/32

Build a kernel image, if selected
Build a bootloader image, if selected

Create a root filesystem in selected formats

Buildroot output is stored in a single directory, output /. This directory contains several subdirectories:

images/ where all the images (kernel image, bootloader and root filesystem images) are stored.

build/ where all the components except for the cross-compilation toolchain are built (this includes tools needed to run
Buildroot on the host and packages compiled for the target). The build/ directory contains one subdirectory for each of
these components.

staging/ which contains a hierarchy similar to a root filesystem hierarchy. This directory contains the installation of the
cross-compilation toolchain and all the userspace packages selected for the target. However, this directory is not intended to
be the root filesystem for the target: it contains a lot of development files, unstripped binaries and libraries that make it far too
big for an embedded system. These development files are used to compile libraries and applications for the target that depend
on other libraries.

target/ which contains almost the complete root filesystem for the target: everything needed is present except the device
files in /dev/ (Buildroot can’t create them because Buildroot doesn’t run as root and doesn’t want to run as root). Therefore,
this directory should not be used on your target. Instead, you should use one of the images built in the images/ directory.
If you need an extracted image of the root filesystem for booting over NFS, then use the tarball image generated in images/
and extract it as root. Compared to staging/, target/ contains only the files and libraries needed to run the selected
target applications: the development files (headers, etc.) are not present, unless the development files in target
filesystem option is selected.

host/ contains the installation of tools compiled for the host that are needed for the proper execution of Buildroot, including
the cross-compilation toolchain.

toolchain/ contains the build directories for the various components of the cross-compilation toolchain.

3.2 Offline builds

If you intend to do an offline build and just want to download all sources that you previously selected in the configurator
(menuconfig, xconfig or gconfig), then issue:

$ make source

You can now disconnect or copy the content of your d1 directory to the build-host.

3.3 Building out-of-tree

Buildroot supports building out of tree with a syntax similar to the Linux kernel. To use it, add O=<directory> to the make
command line:

$ make O=/tmp/build

Or:

$ cd /tmp/build; make O=$PWD -C path/to/buildroot

All the output files will be located under /tmp/build.

When using out-of-tree builds, the Buildroot . config and temporary files are also stored in the output directory. This means
that you can safely run multiple builds in parallel using the same source tree as long as they use unique output directories.

For ease of use, Buildroot generates a Makefile wrapper in the output directory - So after the first run, you no longer need to pass

)

=..and -C .., simply run (in the output directory):

$ make <target>

The Buildroot user manual
5/32

3.4 Environment variables

Buildroot also honors some environment variables, when they are passed to make or set in the environment:

* HOSTCXX, the host C++ compiler to use
* HOSTCC, the host C compiler to use

* UCLIBC_CONFIG_FILE=<path/to/.config>, path to the uClibc configuration file, used to compile uClibc, if an in-
ternal toolchain is being built

* BUSYBOX_CONFIG_FILE=<path/to/.config>, path to the Busybox configuration file

* BUILDROOT_DL_DIR to override the directory in which Buildroot stores/retrieves downloaded files

An example that uses config files located in the toplevel directory and in your SHOME:

$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config

If you want to use a compiler other than the default gcc or g++ for building helper-binaries on your host, then do

$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD

3.5 Complying with opensource licenses

All of the end products of Buildroot (toolchain, root filesystem, kernel, bootloaders) contain opensource software, released under
various licenses.

Using opensource software gives you the freedom to build rich embedded systems choosing from a wide range of packages,
but also gives some obligations that you must know and honour. Some licenses require you to publish the license text in the
documentation of your product. Other require you to redistribute the source code of the software to those that receive your
product.

The exact requirements of each license is documented in each package, and it is your (or your legal office’s) responsibility to
comply with these requirements. To make this easier for you, Buildroot can collect for you some material you will probably need.
To produce this material, after you configured Buildroot with make menuconfig, make xconfig or make gconfig,
run:

make legal-info

Buildroot will collect legally-relevant material in your output directory, under the legal-info/ subdirectory. There you will
find:

* A README file, that summarizes the produced material and contains warnings about material that Buildroot could not produce.

* buildroot.config: thisis the Buildroot configuration file that is usually produced with make menuconfig, and which
is necessary to reproduce the build.

* The source code for all packages; this is saved in the sources/ subdirectory (except for proprietary packages, whose source
code is not saved); patches applied to some packages by Buildroot are distributed with the Buildroot sources and are not
duplicated in the sources/ subdirectory.

* A manifest file listing the configured packages, their version, license and related information. Some of these information might
be not defined in Buildroot; in this case they are clearly marked as "unknown" or similar.

* A licenses/ subdirectory, which contains the license text of packages. If the license file(s) are not defined in Buildroot, the
file is not produced and a warning in the README indicates this.

The Buildroot user manual
6/32

Please note that the aim of the 1egal-info feature of Buildroot is to produce all the material that is somehow relevant for legal
compliance with the package licenses. Buildroot does not try to produce the exact material that you must somehow make public.
It does surely produce some more material than is needed for a strict legal compliance. For example, it produces the source code
for packages released under BSD-like licenses, that you might not want to redistribute in source form.

Moreover, due to technical limitations, Buildroot does not produce some material that you will or may need, such as the toolchain
source code and the Buildroot source code itself. When you run make legal-info, Buildroot produces warnings in the
README file to inform you of relevant material that could not be saved.

Here is a list of the licenses that are most widely used by packages in Buildroot, with the name used in the manifest file:

¢ GPLv2: GNU General Public License, version 2;

* GPLv2+: GNU General Public License, version 2 or (at your option) any later version;

¢ GPLv3: GNU General Public License, version 3;

* GPLv3+: GNU General Public License, version 3 or (at your option) any later version;

* GPL: GNU General Public License (any version);

e LGPLv2.1: GNU Lesser General Public License, version 2.1;

* LGPLv2.1+: GNU Lesser General Public License, version 2.1 or (at your option) any later version;
e LGPLv3: GNU Lesser General Public License, version 3;

* LGPLv3+: GNU Lesser General Public License, version 3 or (at your option) any later version;
* LGPL: GNU Lesser General Public License (any version);

* BSD-4c: Original BSD 4-clause license;

* BSD-3c: BSD 3-clause license;

* BSD-2c: BSD 2-clause license;

* PROPRIETARY: marks a non-opensource package; Buildroot does not save any licensing info or source code for these pack-
ages.

3.6 Complying with the Buildroot license

Buildroot itself is an opensource software, released under the GNU General Public License, version 2 or (at your option) any
later version. However, being a build system, it is not normally part of the end product: if you develop the root filesystem, kernel,
bootloader or toolchain for a device, the code of Buildroot is only present on the development machine, not in the device storage.

Nevertheless, the general view of the Buildroot developers is that you should release the Buildroot source code along with the
source code of other packages when releasing a product that contains GPL-licensed software. This is because the GNU GPL
defines the "complete source code" for an executable work as "all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable". Buildroot is part of the
scripts used to control compilation and installation of the executable, and as such it is considered part of the material that must
be redistributed.

Keep in mind this is only the Buildroot developers’ opinion, and you should consult your legal department or lawyer in case of
any doubt.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

The Buildroot user manual
7/32

Chapter 4

Customization

4.1 Customizing the generated target filesystem

There are a few ways to customize the resulting target filesystem:

» Customize the target filesystem directly and rebuild the image. The target filesystem is available under output /target/.
You can simply make your changes here and run make afterwards - this will rebuild the target filesystem image. This method
allows you to do anything to the target filesystem, but if you decide to completely rebuild your toolchain and tools, these
changes will be lost.

» Create your own target skeleton. You can start with the default skeleton available under £s/skeleton and then customize it
to suit your needs. The BR2_ROOTFS_SKELETON_CUSTOM and BR2_ROOTFS_SKELETON_CUSTOM_PATH will allow
you to specify the location of your custom skeleton. At build time, the contents of the skeleton are copied to output/target
before any package installation.

¢ In the Buildroot configuration, you can specify the path to a post-build script, that gets called after Buildroot builds all the
selected software, but before the rootfs packages are assembled. The destination root filesystem folder is given as the first
argument to this script, and this script can then be used to copy programs, static data or any other needed file to your target
filesystem. You should, however, use this feature with care. Whenever you find that a certain package generates wrong or
unneeded files, you should fix that package rather than work around it with a post-build cleanup script.

* A special package, customize, stored in package/customize can be used. You can put all the files that you want to see in
the final target root filesystem in package/customize/source, and then enable this special package in the configuration
system.

4.2 Customizing the Busybox configuration

Busybox is very configurable, and you may want to customize it. You can follow these simple steps to do so. This method isn’t
optimal, but it’s simple, and it works:

* Do an initial compilation of Buildroot, with busybox, without trying to customize it.
* Invoke make busybox-menuconfig. The nice configuration tool appears, and you can customize everything.

* Run the compilation of Buildroot again.

Otherwise, you can simply change the package/busybox/busybox-<version>.config file, if you know the options
you want to change, without using the configuration tool.

If you want to use an existing config file for busybox, then see section [?simparal].

http://www.busybox.net/

The Buildroot user manual
8/32

4.3 Customizing the uClibc configuration

Just like BusyBox [?simpara], uClibc offers a lot of configuration options. They allow you to select various functionalities
depending on your needs and limitations.

The easiest way to modify the configuration of uClibc is to follow these steps:

* Do an initial compilation of Buildroot without trying to customize uClibc.

* Invoke make uclibc-menuconfig. The nice configuration assistant, similar to the one used in the Linux kernel or
Buildroot, appears. Make your configuration changes as appropriate.

* Copythe $ (0) /toolchain/uclibc-VERSION/ .config filetoadifferent place (like toolchain/uClibc/uClibc-myc
or board/mymanufacturer/myboard/uClibc.config) and adjust the uClibc configuration (configuration option
BR2_UCLIBC_CONFIG) to use this configuration instead of the default one.

* Run the compilation of Buildroot again.

Otherwise, you can simply change toolchain/uClibc/uClibc. config, without running the configuration assistant.

If you want to use an existing config file for uclibc, then see [?simpara].

4.4 Customizing the Linux kernel configuration

The Linux kernel configuration can be customized just like BusyBox [?simpara] and uClibc [?simpara] usingmake linux-menucon:
Make sure you have enabled the kernel build in make menuconfig first. Once done, run make to (re)build everything.

If you want to use an existing config file for Linux, then see [?simpara].

4.5 Customizing the toolchain

There are three distinct types of toolchain backend supported in Buildroot, available under the menu Toolchain, invoking
make menuconfig.

4.5.1 Using the external toolchain backend

There is no way of tuning an external toolchain since Buildroot does not generate it.

It also requires to set the Buildroot settings according to the toolchain ones (see [?simpara]).
4.5.2 Using the internal Buildroot toolchain backend

The internal Buildroot toolchain backend only allows to generate uClibc-based toolchains.

However, it allows to tune major settings, such as:

¢ Linux header version
* uClibc configuration (see uClibc [?simpara])

¢ Binutils, GCC, Gdb and toolchain options

This is directly available after selecting the Buildroot toolchain type in the menu Toolchain.

http://www.uclibc.org/
http://www.uclibc.org/
http://www.uclibc.org/

The Buildroot user manual
9/32

4.5.3 Using the Crosstool-NG backend

The crosstool-NG toolchain backend enables a rather limited set of settings under the Buildroot Toolchain menu (ie. when
invoking make menuconfig); mostly:

* The crosstool-NG configuration file

* Gdb and some toolchain options

Then, the toolchain can be finely tuned invoking make ctng-menuconfig.

http://crosstool-ng.org
http://crosstool-ng.org

The Buildroot user manual
10/32

Chapter 5

Understanding how to rebuild packages

One of the most common questions asked by Buildroot users is how to rebuild a given package or how to remove a package
without rebuilding everything from scratch.

Removing a package is currently unsupported by Buildroot without rebuilding from scratch. This is because Buildroot doesn’t
keep track of which package installs what files in the output/staging and output/target directories. However, imple-
menting clean package removal is on the TODO-list of Buildroot developers.

The easiest way to rebuild a single package from scratch is to remove its build directory in output /build. Buildroot will
then re-extract, re-configure, re-compile and re-install this package from scratch.

For convenience, most packages support the special make targets <package>-reconfigure and <package>-rebuild to repeat the
configure and build steps.

However, if you don’t want to rebuild the package completely from scratch, a better understanding of the Buildroot internals is
needed. Internally, to keep track of which steps have been done and which steps remain to be done, Buildroot maintains stamp
files (empty files that just tell whether this or that action has been done). The problem is that these stamp files are not uniformly
named and handled by the different packages, so some understanding of the particular package is needed.

For packages relying on Buildroot packages infrastructures (see this section [?simpara] for details), the following stamp files are
relevant:

* output/build/packagename-version/.stamp_configured. If removed, Buildroot will trigger the recompila-
tion of the package from the configuration step (execution of . /configure).

* output/build/packagename-version/.stamp_built. If removed, Buildroot will trigger the recompilation of
the package from the compilation step (execution of make).

For other packages, an analysis of the specific package.mk file is needed. For example, the zlib Makefile used to look like this
(before it was converted to the generic package infrastructure):

$(ZLIB_DIR)/.configured: $(ZLIB_DIR)/.patched
(cd $(ZLIB_DIR); rm -rf config.cache; \
[...]
)
touch $@

S(ZLIB_DIR) /libz.a: $(ZLIB_DIR)/ .configured
S (MAKE) -C S$(ZLIB_DIR) all libz.a
touch -c $@

If you want to trigger the reconfiguration, you need to remove output /build/zlib-version/.configured. If you
want to trigger only the recompilation, you need to remove output /build/zlib-version/libz.a.

Note that most packages, if not all, will progressively be ported over to the generic or autotools infrastructure, making it much
easier to rebuild individual packages.

The Buildroot user manual
11/32

Chapter 6

How Buildroot works

As mentioned above, Buildroot is basically a set of Makefiles that download, configure, and compile software with the correct
options. It also includes patches for various software packages - mainly the ones involved in the cross-compilation tool chain
(gcc,binutils and uClibc).

There is basically one Makefile per software package, and they are named with the . mk extension. Makefiles are split into three
main sections:
* toolchain (in the toolchain/ directory) contains the Makefiles and associated files for all software related to the cross-

compilation toolchain: binutils, gcc, gdb, kernel-headers and uClibec.

» package (in the package/ directory) contains the Makefiles and associated files for all user-space tools that Buildroot can
compile and add to the target root filesystem. There is one sub-directory per tool.

* target (in the target directory) contains the Makefiles and associated files for software related to the generation of the target
root filesystem image. Four types of filesystems are supported: ext2, jffs2, cramfs and squashfs. For each of them there is a
sub-directory with the required files. There is also a default/ directory that contains the target filesystem skeleton.

Each directory contains at least 2 files:

* something.mk is the Makefile that downloads, configures, compiles and installs the package something.

* Config.in is a part of the configuration tool description file. It describes the options related to the package.
The main Makefile performs the following steps (once the configuration is done):

* Create all the output directories: staging, target, build, stamps, etc. in the output directory (output/ by default,
another value can be specified using 0=)

* Generate all the targets listed in the BASE_ TARGETS variable. When an internal toolchain is used, this means generating the
cross-compilation toolchain. When an external toolchain is used, this means checking the features of the external toolchain
and importing it into the Buildroot environment.

* Generate all the targets listed in the TARGETS variable. This variable is filled by all the individual components’ Makefiles.
Generating these targets will trigger the compilation of the userspace packages (libraries, programs), the kernel, the bootloader
and the generation of the root filesystem images, depending on the configuration.

The Buildroot user manual
12/32

Chapter 7

Using the generated toolchain outside Buildroot

You may want to compile, for your target, your own programs or other software that are not packaged in Buildroot. In order to
do this you can use the toolchain that was generated by Buildroot.

The toolchain generated by Buildroot is located by defaultin out put /host /. The simplest way to useitis to add output /host/us
to your PATH environment variable and then to use ARCH-1inux—gcc, ARCH-1linux—-objdump, ARCH-1inux-1d, etc.

It is possible to relocate the toolchain - but then ——sysroot must be passed every time the compiler is called to tell where the
libraries and header files are.

It is also possible to generate the Buildroot toolchain in a directory other than output /host by using the Build options
— Host dir option. This could be useful if the toolchain must be shared with other users.

The Buildroot user manual
13/32

Chapter 8

Using an external toolchain

Using an already existing toolchain is useful for different reasons:

* you already have a toolchain that is known to work for your specific CPU
* you want to speed up the Buildroot build process by skipping the long toolchain build part

* the toolchain generation feature of Buildroot is not sufficiently flexible for you (for example if you need to generate a system
with glibc instead of uClibc)

Buildroot supports using existing toolchains through a mechanism called external toolchain. The external toolchain mechanism
is enabled in the Toolchain menu, by selecting External toolchaininToolchain type.

Then, you have three solutions to use an external toolchain:

* Use a predefined external toolchain profile, and let Buildroot download, extract and install the toolchain. Buildroot already
knows about a few CodeSourcery toolchains for ARM, PowerPC, MIPS and SuperH. Just select the toolchain profile in
Toolchain through the available ones. This is definitely the easiest solution.

» Use a predefined external toolchain profile, but instead of having Buildroot download and extract the toolchain, you can tell
Buildroot where your toolchain is already installed on your system. Just select the toolchain profile in Toolchain through
the available ones, unselect Download toolchain automatically, and fill the Toolchain path text entry with
the path to your cross-compiling toolchain.

» Use a completely custom external toolchain. This is particularly useful for toolchains generated using crosstool-NG. To do this,
select the Custom toolchain solution in the Toolchain list. You need to fill the Toolchain path, Toolchain
prefixand External toolchain C library options. Then, you have to tell Buildroot what your external toolchain
supports. If your external toolchain uses the glibc library, you only have to tell whether your toolchain supports C or not.

If your external toolchain uses the uclibc library, then you have to tell Buildroot if
it supports largefile, IPv6, RPC, wide-char, locale, program invocation, threads and
C. At the beginning of the execution, Buildroot will tell you if the selected options do not match the toolchain configuration.

Our external toolchain support has been tested with toolchains from CodeSourcery, toolchains generated by crosstool-NG, and
toolchains generated by Buildroot itself. In general, all toolchains that support the sysroot feature should work. If not, do not
hesitate to contact the developers.

We do not support toolchains from the ELDK of Denx, for two reasons:
* The ELDK does not contain a pure toolchain (i.e just the compiler, binutils, the C and C++ libraries), but a toolchain that comes

with a very large set of pre-compiled libraries and programs. Therefore, Buildroot cannot import the sysroot of the toolchain,
as it would contain hundreds of megabytes of pre-compiled libraries that are normally built by Buildroot.

http://crosstool-ng.org
http://www.denx.de/wiki/DULG/ELDK

The Buildroot user manual
14 /32

* The ELDK toolchains have a completely non-standard custom mechanism to handle multiple library variants. Instead of using
the standard GCC multilib mechanism, the ARM ELDK uses different symbolic links to the compiler to differentiate between
library variants (for ARM soft-float and ARM VFP), and the PowerPC ELDK compiler uses a CROSS_COMP I LE environment
variable. This non-standard behaviour makes it difficult to support ELDK in Buildroot.

We also do not support using the distribution toolchain (i.e the gcc/binutils/C library installed by your distribution) as the
toolchain to build software for the target. This is because your distribution toolchain is not a "pure" toolchain (i.e only with
the C/C++ library), so we cannot import it properly into the Buildroot build environment. So even if you are building a system
for a x86 or x86_64 target, you have to generate a cross-compilation toolchain with Buildroot or crosstool-NG.

The Buildroot user manual
15/32

Chapter 9

Using ccache in Buildroot

ccache is a compiler cache. It stores the object files resulting from each compilation process, and is able to skip future compilation
of the same source file (with same compiler and same arguments) by using the pre-existing object files. When doing almost
identical builds from scratch a number of times, it can nicely speed up the build process.

ccache support is integrated in Buildroot. You just have to enable Enable compiler cacheinBuild options. This
will automatically build ccache and use it for every host and target compilation.

The cache is located in $SHOME/ .buildroot—-ccache. It is stored outside of Buildroot output directory so that it can be
shared by separate Buildroot builds. If you want to get rid of the cache, simply remove this directory.

You can get statistics on the cache (its size, number of hits, misses, etc.) by running make ccache-stats.

http://ccache.samba.org

The Buildroot user manual
16 /32

Chapter 10

Location of downloaded packages

It might be useful to know that the various tarballs that are downloaded by the Makefiles are all stored in the DL_DIR which by
default is the d1 directory. It’s useful, for example, if you want to keep a complete version of Buildroot which is known to be
working with the associated tarballs. This will allow you to regenerate the toolchain and the target filesystem with exactly the
same versions.

If you maintain several Buildroot trees, it might be better to have a shared download location. This can be accessed by creating
a symbolic link from the d1 directory to the shared download location:

$ 1In —-s <shared download location> dl

Another way of accessing a shared download location is to create the BUILDROOT_DL_DIR environment variable. If this is set,
then the value of DL_DIR in the project is overridden. The following line should be added to <~/ .bashrc>.

$ export BUILDROOT_DL_DIR <shared download location>

The Buildroot user manual
17 /32

Chapter 11

Adding new packages to Buildroot

This section covers how new packages (userspace libraries or applications) can be integrated into Buildroot. It also shows how
existing packages are integrated, which is needed for fixing issues or tuning their configuration.

11.1 Package directory

First of all, create a directory under the package directory for your software, for example 1ibfoo.

Some packages have been grouped by topic in a sub-directory: multimedia, java, x11r7, and games. If your package fits
in one of these categories, then create your package directory in these.

11.1.1 Config.in file

Then, create a file named Config. in. This file will contain the option descriptions related to our 1ibfoo software that will
be used and displayed in the configuration tool. It should basically contain:

config BR2_PACKAGE_LIBFOO
bool "libfoo"
help
This is a comment that explains what libfoo is.

http://foosoftware.org/libfoo/

The bool line, help line and other meta-informations about the configuration option must be indented with one tab. The help
text itself should be indented with one tab and two spaces, and it must mention the upstream URL of the project.

Of course, you can add other sub-options into a 1f BR2_PACKAGE_LIBFOO. ..endif statement to configure particular
things in your software. You can look at examples in other packages. The syntax of the Config. in file is the same as the one
for the kernel Kconfig file. The documentation for this syntax is available at http://Ixr.free-electrons.com/source/Documentation/-
kbuild/kconfig-language.txt

Finally you have to add your new 1ibfoo/Config.in to package/Config.in (or in a category subdirectory if you
decided to put your package in one of the existing categories). The files included there are sorted alphabetically per category and
are NOT supposed to contain anything but the bare name of the package.

source "package/libfoo/Config.in"

The Config. in file of your package must also ensure that dependencies are enabled. Typically, Buildroot uses the following
rules:

* Usea select type of dependency for dependencies on libraries. These dependencies are generally not obvious and it therefore
make sense to have the kconfig system ensure that the dependencies are selected. For example, the libgtk2 package uses
select BR2_PACKAGE_LIBGLIB2 to make sure this library is also enabled.

http://lxr.free-electrons.com/source/Documentation/kbuild/kconfig-language.txt
http://lxr.free-electrons.com/source/Documentation/kbuild/kconfig-language.txt

The Buildroot user manual
18/32

* Use a depends on type of dependency when the user really needs to be aware of the dependency. Typically, Buildroot
uses this type of dependency for dependencies on toolchain options (large file support, RPC support, [IPV6 support), or for
dependencies on "big" things, such as the X.org system. In some cases, especially dependency on toolchain options, it is
recommended to add a comment displayed when the option is not enabled, so that the user knows why the package is not
available.

An example illustrates both the usage of select and depends on.

config BR2_PACKAGE_ACL

bool "acl"

select BR2_PACKAGE_ATTR

depends on BR2_LARGEFILE

help
POSIX Access Control Lists, which are used to define more
fine-grained discretionary access rights for files and
directories.
This package also provides libacl.

http://savannah.nongnu.org/projects/acl

comment "acl requires a toolchain with LARGEFILE support"
depends on !BR2_LARGEFILE

Note that these two dependency types are only transitive with the dependencies of the same kind.
This means, in the following example:

config BR2_PACKAGE_A
bool "Package A"

config BR2_PACKAGE_B
bool "Package B"
depends on BR2_PACKAGE_A

config BR2_PACKAGE_C
bool "Package C"
depends on BR2_PACKAGE_B

config BR2_PACKAGE_D
bool "Package D"
select BR2_PACKAGE_B

config BR2_PACKAGE_E
bool "Package E"
select BR2_PACKAGE_D

* Selecting Package C will be visible if Package B has been selected, which in turn is only visible if Package A has been
selected.

* Selecting Package E will select Package D, which will select Package B, it will not check for the dependencies of
Package B, soit will not select Package A.

» Since Package Bis selected but Package A is not, this violates the dependency of Package B on Package A. There-
fore, in such a situation, the transitive dependency has to be added explicitly:

config BR2_PACKAGE_D
bool "Package D"
select BR2_PACKAGE_B
depends on BR2_PACKAGE_A

The Buildroot user manual
19/32

config BR2_PACKAGE_E
bool "Package E"
select BR2_PACKAGE_D
depends on BR2_PACKAGE_A

Overall, for package library dependencies, select should be preferred.

Note that such dependencies will make sure that the dependency option is also enabled, but not necessarily built before your
package. To do so, the dependency also needs to be expressed in the . mk file of the package.

11.1.2 The .mk file

Finally, here’s the hardest part. Create a file named 1ibfoo.mk. It describes how the package should be downloaded, config-
ured, built, installed, etc.

Depending on the package type, the . mk file must be written in a different way, using different infrastructures:

* Makefiles for generic packages (not using autotools or CMake): These are based on an infrastructure similar to the one used
for autotools-based packages, but requires a little more work from the developer. They specify what should be done for the
configuration, compilation, installation and cleanup of the package. This infrastructure must be used for all packages that do
not use the autotools as their build system. In the future, other specialized infrastructures might be written for other build
systems. We cover them through in a tutorial Section 11.2.1 and a reference Section 11.2.2.

* Makefiles for autotools-based software (autoconf, automake, etc.): We provide a dedicated infrastructure for such packages,
since autotools is a very common build system. This infrastructure must be used for new packages that rely on the autotools as
their build system. We cover them through a tutorial Section 11.3.1 and reference Section 11.3.2.

* Makefiles for cmake-based software: We provide a dedicated infrastructure for such packages, as CMake is a more and more
commonly used build system and has a standardized behaviour. This infrastructure must be used for new packages that rely on
CMake. We cover them through a tutorial Section 11.4.1 and reference Section 11.4.2.

* Hand-written Makefiles: These are currently obsolete, and no new manual Makefiles should be added. However, since there
are still many of them in the tree, we keep them documented in a tutorial Section 11.5.

11.2 Infrastructure for packages with specific build systems

By packages with specific build systems we mean all the packages whose build system is not one of the standard ones, such as
autotools or CMake. This typically includes packages whose build system is based on hand-written Makefiles or shell scripts.

11.2.1 generic-package Tutorial

OL: #HH##HHHH#AHHFHEHFH AR F A FHH AR A IR HE RS FH SR H SR HH SR H

02: #
03: # libfoo
04: #

(OISTINE 0
06: LIBFOO_VERSION = 1.0

07: LIBFOO_SOURCE = libfoo-$ (LIBFOO_VERSION) .tar.gz

08: LIBFOO_SITE = http://www.foosoftware.org/download

09: LIBFOO_INSTALL_STAGING = YES

10: LIBFOO_DEPENDENCIES = host-libaaa libbbb

11:

12: define LIBFOO_BUILD_CMDS

13: $ (MAKE) CC="$ (TARGET_CC)" LD="S$(TARGET_LD)" -C $(@D) all
14: endef

15:

16: define LIBFOO_INSTALL_STAGING_CMDS

The Buildroot user manual
20/32

17: S (INSTALL) -D —m 0755 $(@D)/libfoo.a $(STAGING_DIR) /usr/lib/libfoo.a
18: S (INSTALL) -D -m 0644 $(@D)/foo.h $(STAGING_DIR)/usr/include/foo.h
19: S (INSTALL) -D —-m 0755 $(@D)/libfoo.sox $(STAGING_DIR) /usr/lib

20: endef

21:

22: define LIBFOO_INSTALL_TARGET_CMDS

23: $ (INSTALL) -D —m 0755 $(@D)/libfoo.sox $(TARGET_DIR) /usr/lib

24: $ (INSTALL) -d -m 0755 $(TARGET_DIR) /etc/foo.d

25: endef

26:

27: define LIBFOO_DEVICES

28: /dev/foo ¢ 666 0 0 42 0 - - -

29: endef

30:

31: define LIBFOO_PERMISSIONS

32: /bin/foo £ 4755 0 0 - - - - -

33: endef

34:

35: $(eval $(generic-package))

The Makefile begins on line 6 to 8 with metadata information: the version of the package (LIBFOO_VERSION), the name
of the tarball containing the package (LIBFOO_SOURCE) and the Internet location at which the tarball can be downloaded
(LIBFOO_SITE). All variables must start with the same prefix, LIBFOO_ in this case. This prefix is always the uppercased
version of the package name (see below to understand where the package name is defined).

On line 9, we specify that this package wants to install something to the staging space. This is often needed for libraries, since
they must install header files and other development files in the staging space. This will ensure that the commands listed in the
LIBFOO_INSTALL_STAGING_CMDS variable will be executed.

On line 10, we specify the list of dependencies this package relies on. These dependencies are listed in terms of lower-case
package names, which can be packages for the target (without the host— prefix) or packages for the host (with the host-)
prefix). Buildroot will ensure that all these packages are built and installed before the current package starts its configuration.

The rest of the Makefile defines what should be done at the different steps of the package configuration, compilation and installa-
tion. LIBFOO_BUILD_CMDS tells what steps should be performed to build the package. LIBFOO_INSTALL_STAGING_CMDS
tells what steps should be performed to install the package in the staging space. LIBFOO_INSTALL_TARGET_CMDS tells what
steps should be performed to install the package in the target space.

All these steps rely on the $ (@D) variable, which contains the directory where the source code of the package has been extracted.

Finally, on line 35, we call the generic-package which generates, according to the variables defined previously, all the
Makefile code necessary to make your package working.

11.2.2 generic-package Reference

There are two variants of the generic target. The generic-package macro is used for packages to be cross-compiled for the
target. The host—-generic-package macro is used for host packages, natively compiled for the host. It is possible to call
both of them in a single .mk file: once to create the rules to generate a target package and once to create the rules to generate a
host package:

$(eval $(generic-package))
$(eval $(host-generic-package))

This might be useful if the compilation of the target package requires some tools to be installed on the host. If the package
name is 1ibfoo, then the name of the package for the target is also 1ibfoo, while the name of the package for the host is
host-1libfoo. These names should be used in the DEPENDENCIES variables of other packages, if they depend on 1ibfoo
orhost-libfoo.

The call to the generic—package and/or host-generic-package macro must be at the end of the . mk file, after all
variable definitions.

The Buildroot user manual
21/32

For the target package, the generic-package uses the variables defined by the .mk file and prefixed by the uppercased
package name: LIBFOO_~*. host-generic-package uses the HOST_LIBFOO_« variables. For some variables, if
the HOST_LIBFOO_ prefixed variable doesn’t exist, the package infrastructure uses the corresponding variable prefixed by
LIBFOO_. This is done for variables that are likely to have the same value for both the target and host packages. See below for
details.

The list of variables that can be set in a . mk file to give metadata information is (assuming the package name is 1ibfoo):

e LIBFOO_VERSION, mandatory, must contain the version of the package. Note that if HOST_LIBFOO_VERSION doesn’t
exist, it is assumed to be the same as LIBFOO_VERSION. It can also be a revision number, branch or tag for packages that are
fetched directly from their revision control system.

Examples:

LIBFOO_VERSION = 0.1.2

LIBFOO_VERSION = cb9d6aaf%9429e838f0e54faa3d455bcbabbeef057
LIBFOO_VERSION = stable

e LIBFOO_SOURCE may contain the name of the tarball of the package. If HOST_LIBFOO_SOURCE is not specified, it defaults
to LIBFOO_SOURCE. If none are specified, then the value is assumed to be packagename—-$ (LIBFOO_VERSION) .tar.gz.
Example: LIBFOO_SOURCE = foobar-$ (LIBFOO_VERSION) .tar.bz2

e LIBFOO_PATCH may contain the name of a patch, that will be downloaded from the same location as the tarball indicated in
LIBFOO_SOURCE. If HOST_LIBFOO_PATCH is not specified, it defaults to LIBFOO_PATCH. Also note that another mech-
anism is available to patch a package: all files of the form packagename-packageversion-description.patch
present in the package directory inside Buildroot will be applied to the package after extraction.

* LIBFOO_SITE provides the location of the package, which can be a URL or a local filesystem path. HTTP, FTP and SCP
are supported URL types for retrieving package tarballs. Git, Subversion, Mercurial, and Bazaar are supported URL types for
retrieving packages directly from source code management systems. A filesystem path may be used to specify either a tarball
or a directory containing the package source code. See LIBFOO_SITE_METHOD below for more details on how retrieval
works.

Note that SCP URLSs should be of the form scp:// [user@]host:filepath, and that filepath is relative to the user’s
home directory, so you may want to prepend the path with a slash for absolute paths: scp:// [user@]host:/absolutepath.
If HOST_LIBFOO_SITE is not specified, it defaults to LIBFOO_SITE. If none are specified, then the location is assumed to

be http://$$ (BR2_SOURCEFORGE_MIRROR) .dl.sourceforge.net/sourceforge/packagename.

Examples:

LIBFOO_SITE=http://www.libfoosoftware.org/libfoo
LIBFOO_SITE=http://svn.xiph.org/trunk/Tremor/
LIBFOO_SITE=git://github.com/kergoth/tslib.git LIBFOO_SITE=/opt/software/libfoo.tar.gz
LIBFOO_SITE=$ (TOPDIR)/../src/libfoo/

e LIBFOO_SITE_METHOD determines the method used to fetch or copy the package source code. In many cases, Build-
root guesses the method from the contents of LIBFOO_SITE and setting LIBFOO_SITE_METHOD is unnecessary. When
HOST_LIBFOO_SITE_METHOD is not specified, it defaults to the value of LIBFOO_SITE_METHOD.

The possible values of LIBFOO_SITE_METHOD are:

— wget for normal FTP/HTTP downloads of tarballs. Used by default when LIBFOO_SITE begins withhttp://, https://
or ftp://.

— scp for downloads of tarballs over SSH with scp. Used by default when LIBFOO_SITE begins with scp://.

— svn for retrieving source code from a Subversion repository. Used by default when LIBFOO_SITE begins with svn://.
Whenahttp:// Subversion repository URL is specified in LIBFOO_SITE, one must specify LIBFOO_SITE_METHOD=svn.

Buildroot performs a checkout which is preserved as a tarball in the download cache; subsequent builds use the tarball instead
of performing another checkout.

— git for retrieving source code from a Git repository. Used by default when LIBFOO_SITE begins with git://. The
downloaded source code is cached as with the svn method.

— hg for retrieving source code from a Mercurial repository. One must specify LIBFOO_SITE_METHOD=hg when LIBFOO_SITE
contains a Mercurial repository URL. The downloaded source code is cached as with the svn method.

— bzr for retrieving source code from a Bazaar repository. Used by default when LIBFOO_SITE begins with bzr://. The
downloaded source code is cached as with the svn method.

The Buildroot user manual
22/32

— file for alocal tarball. One should use this when LIBFOO_SITE specifies a package tarball as a local filename. Useful
for software that isn’t available publicly or in version control.

— local for alocal source code directory. One should use this when LIBFOO_SITE specifies a local directory path contain-
ing the package source code. Buildroot copies the contents of the source directory into the package’s build directory.

LIBFOO_DEPENDENCIES lists the dependencies (in terms of package name) that are required for the current target package
to compile. These dependencies are guaranteed to be compiled and installed before the configuration of the current package
starts. In a similar way, HOST_LIBFOO_DEPENDENCIES lists the dependency for the current host package.

LIBFOO_INSTALL_STAGING can besetto YES or NO (default). If set to YES, then the commands in the LIBFOO_INSTALL_STA
variables are executed to install the package into the staging directory.

LIBFOO_INSTALIL_TARGET canbe set to YES (default) or NO. If set to YES, then the commands in the LIBFOO_INSTALIL_TARG!
variables are executed to install the package into the target directory.

LIBFOO_DEVICES lists the device files to be created by Buildroot when using the static device table. The syntax to use is
the makedevs one. You can find some documentation for this syntax in the Section 13.1. This variable is optional.

LIBFOO_PERMISSIONS lists the changes of permissions to be done at the end of the build process. The syntax is once again
the makedevs one. You can find some documentation for this syntax in the Section 13.1. This variable is optional.

LIBFOO_LICENSE defines the license (or licenses) under which the package is released. This name will appear in the
manifest file produced by make legal-info. If the license is one of those listed in [?simpara], use the same string to make
the manifest file uniform. Otherwise, describe the license in a precise and concise way, avoiding ambiguous names such as
BSD which actually name a family of licenses. If the root filesystem you generate contains non-opensource packages, you
can define their license as PROPRIETARY: Buildroot will not save any licensing info or source code for this package. This
variable is optional. If it is not defined, unknown will appear in the 1icense field of the manifest file for this package.

LIBFOO_LICENSE_FILES is a space-separated list of files in the package tarball that contain the license(s) under which the
package is released. make legal-info copies all of these files in the legal-info directory. See [?simpara] for more
information. This variable is optional. If it is not defined, a warning will be produced to let you know, and not saved will
appear in the 1icense files field of the manifest file for this package.

The recommended way to define these variables is to use the following syntax:

LIBFOO_VERSION = 2.32
Now, the variables that define what should be performed at the different steps of the build process.

* LIBFOO_CONFIGURE_CMDS, used to list the actions to be performed to configure the package before its compilation
* LIBFOO_BUILD_CMDS, used to list the actions to be performed to compile the package

* HOST_LIBFOO_INSTALL_CMDS, used to list the actions to be performed to install the package, when the package is a host
package. The package must install its files to the directory given by $ (HOST_DIR). All files, including development files
such as headers should be installed, since other packages might be compiled on top of this package.

e LIBFOO_INSTALL_TARGET_CMDS, used to list the actions to be performed to install the package to the target directory,
when the package is a target package. The package must install its files to the directory given by $ (TARGET_DIR). Only the
files required for documentation and execution of the package should be installed. Header files should not be installed, they
will be copied to the target, if the development files in target filesystem option is selected.

e LIBFOO_INSTALL_STAGING_CMDS, used to list the actions to be performed to install the package to the staging directory,
when the package is a target package. The package must install its files to the directory given by $ (STAGING_DIR). All
development files should be installed, since they might be needed to compile other packages.

* LIBFOO_CLEAN_CMDS, used to list the actions to perform to clean up the build directory of the package.
e LIBFOO_UNINSTALL_TARGET_CMDS, used to list the actions to uninstall the package from the target directory $ (TARGET_DIR)

e LIBFOO_UNINSTALL_STAGING_CMDS, used to list the actions to uninstall the package from the staging directory $ (STAGING_D

The Buildroot user manual
23/32

e LIBFOO_INSTALL_INIT_SYSVand LIBFOO_INSTALL_INIT_SYSTEMD, used to install init scripts either for the systemV-
like init systems (busybox, sysvinit, etc.) or for the systemd units. These commands will be run only when the relevant init sys-
tem is installed (i.e. if systemd is selected as the init system in the configuration, only LIBFOO_INSTALL_INIT_SYSTEMD
will be run).

The preferred way to define these variables is:

define LIBFOO_CONFIGURE_CMDS
action 1
action 2
action 3

endef

In the action definitions, you can use the following variables:

* $(@D), which contains the directory in which the package source code has been uncompressed.
* $(TARGET_CC), $ (TARGET_LD), etc. to get the target cross-compilation utilities
* $(TARGET_CROSS) to get the cross-compilation toolchain prefix

* Of course the $ (HOST_DIR), $ (STAGING_DIR) and $ (TARGET_DIR) variables to install the packages properly.

The last feature of the generic infrastructure is the ability to add hooks. These define further actions to perform after existing
steps. Most hooks aren’t really useful for generic packages, since the .mk file already has full control over the actions per-
formed in each step of the package construction. The hooks are more useful for packages using the autotools infrastructure
described below. However, since they are provided by the generic infrastructure, they are documented here. The exception

is LIBFOO_POST_PATCH_HOOKS. Patching the package is not user definable, so LIBFOO_POST_PATCH_HOOKS will be
userful for generic packages.

The following hook points are available:

e LTBFOO_POST_PATCH_HOOKS

e LTBRFOO_PRE_CONFIGURE_HOOKS

e LIBFOO_POST_CONFIGURE_HOOKS

e LTBFOO_POST_BUILD_HOOKS

e LIBFOO_POST_INSTALL_HOOKS (for host packages only)

* LIBFOO_POST_INSTALL_STAGING_HOOKS (for target packages only)

* LIBFOO_POST_INSTALL_TARGET_HOOKS (for target packages only)

These variables are lists of variable names containing actions to be performed at this hook point. This allows several hooks to be
registered at a given hook point. Here is an example:

define LIBFOO_POST_PATCH_FIXUP
actionl
action2

endef

LIBFOO_POST_PATCH_HOOKS += LIBFOO_POST_PATCH_FIXUP

The Buildroot user manual
24 /32

11.3 Infrastructure for autotools-based packages

11.3.1 autotools-package tutorial

First, let’s see how to write a . mk file for an autotools-based package, with an example :

OL: #AH##HHHH#AHHHHEHFHARF A HHA A A FH R HH SRS H S H SR HH SRR A

02: #
03: # libfoo
04: #

(ORSTINE 3 0
06: LIBFOO_VERSION = 1.0

07: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION) .tar.gz

08: LIBFOO_SITE = http://www.foosoftware.org/download

09: LIBFOO_INSTALL_STAGING = YES

10: LIBFOO_INSTALL_TARGET = YES

11: LIBFOO_CONF_OPT = —--enable-shared
12: LIBFOO_DEPENDENCIES = libglib2 host-pkg-config
13:

14: $(eval $ (autotools—package))

On line 6, we declare the version of the package.

On line 7 and 8, we declare the name of the tarball and the location of the tarball on the Web. Buildroot will automatically
download the tarball from this location.

On line 9, we tell Buildroot to install the package to the staging directory. The staging directory, located in output /staging/
is the directory where all the packages are installed, including their development files, etc. By default, packages are not installed
to the staging directory, since usually, only libraries need to be installed in the staging directory: their development files are
needed to compile other libraries or applications depending on them. Also by default, when staging installation is enabled,
packages are installed in this location using the make install command.

On line 10, we tell Buildroot to also install the package to the target directory. This directory contains what will become the
root filesystem running on the target. Usually, we try not to install header files and to install stripped versions of the binary. By
default, target installation is enabled, so in fact, this line is not strictly necessary. Also by default, packages are installed in this
location using the make install command.

On line 11, we tell Buildroot to pass a custom configure option, that will be passed to the . /configure script before config-
uring and building the package.

On line 12, we declare our dependencies, so that they are built before the build process of our package starts.

Finally, on line line 14, we invoke the autotools—-package macro that generates all the Makefile rules that actually allows
the package to be built.

11.3.2 autotools-package reference

The main macro of the autotools package infrastructure is autotools—package. It is similar to the generic-package
macro. The ability to have target and host packages is also available, with the host—autotools-package macro.

Just like the generic infrastructure, the autotools infrastructure works by defining a number of variables before calling the
autotools—package macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the autotools infrastruc-
ture: LIBFOO_VERSION, LIBFOO_SOURCE, LIBFOO_PATCH, LIBFOO_SITE, LIBFOO_SUBDIR, LIBFOO_DEPENDENCIES,
LIBFOO_INSTALL_STAGING, LIBFOO_INSTALL_TARGET.

A few additional variables, specific to the autotools infrastructure, can also be defined. Many of them are only useful in very
specific cases, typical packages will therefore only use a few of them.

e LIBFOO_SUBDIR may contain the name of a subdirectory inside the package that contains the configure script. This is useful,
if for example, the main configure script is not at the root of the tree extracted by the tarball. If HOST_LIBFOO_SUBDIR is
not specified, it defaults to LIBFOO_SUBDIR.

The Buildroot user manual
25/32

* LIBFOO_CONF_ENV, to specify additional environment variables to pass to the configure script. By default, empty.
* LIBFOO_CONF_OPT, to specify additional configure options to pass to the configure script. By default, empty.

* LIBFOO_MAKE, to specify an alternate make command. This is typically useful when parallel make is enabled in the config-
uration (using BR2__JLEVEL) but that this feature should be disabled for the given package, for one reason or another. By de-
fault, set to $ (MAKE) . If parallel building is not supported by the package, then it should be set to LIBFOO_MAKE=$ (MAKEL) .

* LIBFOO_MAKE_ENV, to specify additional environment variables to pass to make in the build step. These are passed before
the make command. By default, empty.

* LIBFOO_MAKE_OPT, to specify additional variables to pass to make in the build step. These are passed after the make
command. By default, empty.

* LIBFOO_AUTORECONF, tells whether the package should be autoreconfigured or not (i.e, if the configure script and Make-
file.in files should be re-generated by re-running autoconf, automake, libtool, etc.). Valid values are YES and NO. By default,
the value is NO

* LIBFOO_AUTORECONF_OPT to specify additional options passed to the autoreconf program if LIBFOO_AUTORECONF=YES.
By default, empty.

e LIBFOO_LIBTOOL_PATCH tells whether the Buildroot patch to fix libtool cross-compilation issues should be applied or not.
Valid values are YES and NO. By default, the value is YES

e LIBFOO_INSTALL_STAGING_OPT contains the make options used to install the package to the staging directory. By
default, the value is DESTDIR=$$ (STAGING_DIR) install, which is correct for most autotools packages. It is still
possible to override it.

* LIBFOO_INSTALL_TARGET_OPT contains the make options used to install the package to the target directory. By default,
the value is DESTDIR=S$$ (TARGET_DIR) install. The default value is correct for most autotools packages, but it is
still possible to override it if needed.

* LIBFOO_CLEAN_OPT contains the make options used to clean the package. By default, the value is clean.

* LIBFOO_UNINSTALL_STAGING_OPT, contains the make options used to uninstall the package from the staging directory.
By default, the value is DESTDIR=$$ (STAGING_DIR) uninstall.

* LIBFOO_UNINSTALL_TARGET_OPT, contains the make options used to uninstall the package from the target directory. By
default, the value is DESTDIR=$$ (TARGET_DIR) uninstall.

With the autotools infrastructure, all the steps required to build and install the packages are already defined, and they generally
work well for most autotools-based packages. However, when required, it is still possible to customize what is done in any
particular step:

* By adding a post-operation hook (after extract, patch, configure, build or install). See the reference documentation of the
generic infrastructure for details.

* By overriding one of the steps. For example, even if the autotools infrastructure is used, if the package .mk file defines its
own LIBFOO_CONFIGURE_CMDS variable, it will be used instead of the default autotools one. However, using this method
should be restricted to very specific cases. Do not use it in the general case.

11.4 Infrastructure for CMake-based packages

11.4.1 cmake-package tutorial

First, let’s see how to write a . mk file for a CMake-based package, with an example :

The Buildroot user manual
26 /32

OL1: ffffffddddddaaaaaaaatdadattsddttttttttttttttttdddddddadaaaass

02: #
03: # libfoo
04: #

O5: ######4HHH4H4H4HHHHHHHHSHHHHHHHHHHRHHHHS AR HSH A
06: LIBFOO_VERSION = 1.0

07: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION) .tar.gz

08: LIBFOO_SITE = http://www.foosoftware.org/download

09: LIBFOO_INSTALL_STAGING = YES

10: LIBFOO_INSTALL_TARGET = YES

11: LIBFOO_CONF_OPT = -DBUILD_DEMOS=0ON
12: LIBFOO_DEPENDENCIES = libglib2 host-pkg-config
13¢

14: $(eval $ (cmake-package))

On line 6, we declare the version of the package.

On line 7 and 8, we declare the name of the tarball and the location of the tarball on the Web. Buildroot will automatically
download the tarball from this location.

On line 9, we tell Buildroot to install the package to the staging directory. The staging directory, located in output/staging/
is the directory where all the packages are installed, including their development files, etc. By default, packages are not installed
to the staging directory, since usually, only libraries need to be installed in the staging directory: their development files are
needed to compile other libraries or applications depending on them. Also by default, when staging installation is enabled,
packages are installed in this location using the make install command.

On line 10, we tell Buildroot to also install the package to the target directory. This directory contains what will become the
root filesystem running on the target. Usually, we try not to install header files and to install stripped versions of the binary. By
default, target installation is enabled, so in fact, this line is not strictly necessary. Also by default, packages are installed in this
location using the make install command.

On line 11, we tell Buildroot to pass custom options to CMake when it is configuring the package.
On line 12, we declare our dependencies, so that they are built before the build process of our package starts.

Finally, on line line 14, we invoke the cmake-package macro that generates all the Makefile rules that actually allows the
package to be built.

11.4.2 cmake-package reference
The main macro of the CMake package infrastructure is cmake-package. It is similar to the generic-package macro.
The ability to have target and host packages is also available, with the host -cmake-package macro.

Just like the generic infrastructure, the CMake infrastructure works by defining a number of variables before calling the cmake—-packag
macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the CMake infrastructure:
LIBFOO_VERSION, LIBFOO_SOURCE, LIBFOO_PATCH, LIBFOO_SITE, LIBFOO_SUBDIR, LIBFOO_DEPENDENCIES,
LIBFOO_INSTALL_STAGING, LIBFOO_INSTALL_TARGET.

A few additional variables, specific to the CMake infrastructure, can also be defined. Many of them are only useful in very
specific cases, typical packages will therefore only use a few of them.

* LIBFOO_SUBDIR may contain the name of a subdirectory inside the package that contains the main CMakeLists.txt file. This
is useful, if for example, the main CMakeLists.txt file is not at the root of the tree extracted by the tarball. If HOST_LIBFOO_SUBDIR
is not specified, it defaults to LIBFOO_SUBDIR.

* LIBFOO_CONF_ENV, to specify additional environment variables to pass to CMake. By default, empty.

* LIBFOO_CONF_OPT, to specify additional configure options to pass to CMake. By default, empty.

The Buildroot user manual
27 /32

* LIBFOO_MAKE, to specify an alternate make command. This is typically useful when parallel make is enabled in the config-
uration (using BR2_JLEVEL) but that this feature should be disabled for the given package, for one reason or another. By de-
fault, set to $ (MAKE) . If parallel building is not supported by the package, then it should be set to LIBFOO_MAKE=$ (MAKEL) .

* LIBFOO_MAKE_ENV, to specify additional environment variables to pass to make in the build step. These are passed before
the make command. By default, empty.

* LIBFOO_MAKE_OPT, to specify additional variables to pass to make in the build step. These are passed after the make
command. By default, empty.

* LIBFOO_INSTALL_STAGING_OPT contains the make options used to install the package to the staging directory. By
default, the value is DESTDIR=$$ (STAGING_DIR) install, which is correct for most CMake packages. It is still
possible to override it.

* LIBFOO_INSTALL_TARGET_OPT contains the make options used to install the package to the target directory. By default,
the value is DESTDIR=$$ (TARGET_DIR) install. The default value is correct for most CMake packages, but it is still
possible to override it if needed.

* LIBFOO_CLEAN_OPT contains the make options used to clean the package. By default, the value is clean.

With the CMake infrastructure, all the steps required to build and install the packages are already defined, and they generally work
well for most CMake-based packages. However, when required, it is still possible to customize what is done in any particular
step:

* By adding a post-operation hook (after extract, patch, configure, build or install). See the reference documentation of the
generic infrastructure for details.

* By overriding one of the steps. For example, even if the CMake infrastructure is used, if the package .mk file defines its own
LIBFOO_CONFIGURE_CMDS variable, it will be used instead of the default CMake one. However, using this method should
be restricted to very specific cases. Do not use it in the general case.

11.5 Manual Makefile

NOTE: new manual makefiles should not be created, and existing manual makefiles should be converted either to the
generic, autotools or cmake infrastructure. This section is only kept to document the existing manual makefiles and to
help understand how they work.

OL: ########H44HHHHHH#HHHHHHHHHHHHHHHHHHHHHARHHHHHHER RS HHHHESESHAS

02: #
03: # libfoo
04: #

O05: #####HH#4HHHAHHAHAHAHRARAAHARAARARAHRARAHRARAHRARARSFRARIFRARS
06: LIBFOO_VERSION = 1.0

07: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION) .tar.gz

08: LIBFOO_SITE = http://www.foosoftware.org/downloads

09: LIBFOO_DIR = $ (BUILD_DIR)/foo-$ (FOO_VERSION)

10: LIBFOO_BINARY = foo

11: LIBFOO_TARGET_BINARY = usr/bin/foo

12:

13: $(DL_DIR)/$ (LIBFOO_SOURCE) :

14: $ (call DOWNLOAD, $ (LIBFOO_SITE) /$ (LIBFOO_SOURCE))

15:

16: $(LIBFOO_DIR)/.source: $(DL_DIR)/$ (LIBFOO_SOURCE)

17: $ (ZCAT) $(DL_DIR)/$ (LIBFOO_SOURCE) | tar —-C $(BUILD_DIR) $(TAR _OPTIONS) -
18: touch $@

19:

20: $(LIBFOO_DIR)/.configured: $(LIBFOO_DIR)/.source

21 g (cd $(LIBFOO_DIR); rm -rf config.cache; \

22: $ (TARGET_CONFIGURE_OPTS) \

The Buildroot user manual
28/32

23: $ (TARGET_CONFIGURE_ARGS) \

24: ./configure \

25: —-—target=$ (GNU_TARGET_NAME) \

26: ——host=$ (GNU_TARGET_NAME) \

27: ——build=$ (GNU_HOST_NAME) \

28: ——prefix=/usr \

29: —-—-sysconfdir=/etc \

30:)

31: touch $@

32:

33: $(LIBFOO_DIR)/$ (LIBFOO_BINARY): $(LIBFOO_DIR)/.configured

34: $ (MAKE) CC=$ (TARGET_CC) -C $(LIBFOO_DIR)

35:

36: $(TARGET_DIR)/$ (LIBFOO_TARGET BINARY): $ (LIBFOO_DIR)/$ (LIBFOO_BINARY)
37: $ (MAKE) DESTDIR=$ (TARGET_DIR) -C $(LIBFOO_DIR) install-strip
38: rm —-Rf $(TARGET_DIR) /usr/man

39:

40: libfoo: uclibc ncurses $(TARGET_DIR)/$ (LIBFOO_TARGET_BINARY)
41 :

42: libfoo-source: $(DL_DIR)/S$ (LIBFOO_SOURCE)

43:

44: libfoo-clean:

45: $ (MAKE) prefix=$ (TARGET_DIR) /usr -C $ (LIBFOO_DIR) uninstall
46: -$ (MAKE) -C $(LIBFOO_DIR) clean

47 :

48: libfoo-dirclean:

49: rm —-rf $(LIBFOO_DIR)

50:

S1: ####4#44H4#44#H 44 A4 HHHHHFHHFHHHHHH RS HHHHA A EHHSHHHHH S S
52: #

53: # Toplevel Makefile options

54: #

S5: ###HHFHHHHHHHH A A A F A AR
56: ifeq (S$(BR2_PACKAGE_LIBFOO),vy)

57: TARGETS += libfoo

58: endif

First of all, this Makefile example works for a package which comprises a single binary executable. For other software, such as
libraries or more complex stuff with multiple binaries, it must be qqadapted. For examples look at the other % .mk files in the
package directory.

At lines 6-11, a couple of useful variables are defined:

* LIBFOO_VERSION: The version of libfoo that should be downloaded.

e LIBFOO_SOURCE: The name of the tarball of libfoo on the download website or FTP site. As you can see LIBFOO_VERSION
is used.

* LIBFOO_SITE: The HTTP or FTP site from which libfoo archive is downloaded. It must include the complete path to the
directory where LIBFOO_SOURCE can be found.

* LIBFOO_DIR: The directory into which the software will be configured and compiled. Basically, it’s a subdirectory of
BUILD_DIR which is created upon decompression of the tarball.

* LIBFOO_BINARY: Software binary name. As said previously, this is an example for a package with a single binary.

e LIBFOO_TARGET_BINARY: The full path of the binary inside the target filesystem. Lines 13-14 define a target that down-
loads the tarball from the remote site to the download directory (DL_DIR).

Lines 16-18 define a target and associated rules that uncompress the downloaded tarball. As you can see, this target depends on
the tarball file so that the previous target (lines 13-14) is called before executing the rules of the current target. Uncompressing

The Buildroot user manual
29/32

is followed by touching a hidden file to mark the software as having been uncompressed. This trick is used everywhere in a
Buildroot Makefile to split steps (download, uncompress, configure, compile, install) while still having correct dependencies.

Lines 20-31 define a target and associated rules that configure the software. It depends on the previous target (the hidden
.source file) so that we are sure the software has been uncompressed. In order to configure the package, it basically runs the
well-known . /configure script. As we may be doing cross-compilation, target, host and build arguments are given.
The prefix is also set to /usr, not because the software will be installed in /usr on your host system, but because the software
will be installed in + /usr+ on the target filesystem. Finally it creates a . configured file to mark the software as configured.

Lines 33-34 define a target and a rule that compile the software. This target will create the binary file in the compilation directory
and depends on the software being already configured (hence the reference to the . configured file). It basically runs make
inside the source directory.

Lines 36-38 define a target and associated rules that install the software inside the target filesystem. They depend on the binary
file in the source directory to make sure the software has been compiled. They use the install-strip target of the software
Makefile by passing a DESTDIR argument so that the Makefile doesn’t try to install the software in the host /usr but
rather in the target /usr. After the installation, the +/usr/man + directory inside the target filesystem is removed to save space.

Line 40 defines the main target of the software — the one that will eventually be used by the top level Makefile to download,
compile, and then install this package. This target should first of all depend on all needed dependencies of the software (in our
example, uclibc and ncurses) and also depend on the final binary. This last dependency will call all previous dependencies in the
correct order.

Line 42 defines a simple target that only downloads the code source. This is not used during normal operation of Buildroot,
but is needed if you intend to download all required sources at once for later offline build. Note that if you add a new package,
providing a 1 ibfoo-source target is mandatory to support users that wish to do offline-builds. Furthermore, it eases checking
if all package-sources are downloadable.

Lines 44-46 define a simple target to clean the software build by calling the Makefile with the appropriate options. The —~clean
target should run make clean on $(BUILD_DIR)/package-version and MUST uninstall all files of the package from $(STAG-
ING_DIR) and from $(TARGET_DIR).

Lines 48-49 define a simple target to completely remove the directory in which the software was uncompressed, configured and
compiled. The —dirclean target MUST completely rm $(BUILD_DIR)/ package-version.

Lines 51-58 add the target 1 ibfoo to the list of targets to be compiled by Buildroot, by first checking if the configuration option
for this package has been enabled using the configuration tool. If so, it then "subscribes" this package to be compiled by adding
the package to the TARGETS global variable. The name added to the TARGETS global variable is the name of this package’s
target, as defined on line 40, which is used by Buildroot to download, compile, and then install this package.

11.6 Gettext integration and interaction with packages

Many packages that support internationalization use the gettext library. Dependencies for this library are fairly complicated and
therefore, deserves some explanation.

The uClibc C library doesn’t implement gettext functionality, therefore with this C library, a separate gettext must be compiled.
On the other hand, the glibc C library does integrate its own gettext, and in this case, the separate gettext library should not be
compiled, because it creates various kinds of build failures.

Additionally, some packages (such as 11bglib2) do require gettext unconditionally, while other packages (those who support
-—disable-nls in general) only require gettext when locale support is enabled.

Therefore, Buildroot defines two configuration options:

* BR2_NEEDS_GETTEXT, which is true as soon as the toolchain doesn’t provide its own gettext implementation

* BR2_NEEDS_GETTEXT_IF_LOCALE, which is true if the toolchain doesn’t provide its own gettext implementation and if
locale support is enabled

Therefore, packages that unconditionally need gettext should:

The Buildroot user manual
30/32

* Use select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT and possibly select BR2_PACKAGE_LIBINTL
if BR2_NEEDS_GETTEXT, if libintl is also needed

* Use $(if $(BR2_NEEDS_GETTEXT) ,gettext) in the package DEPENDENCIES variable
Packages that need gettext only when locale support is enabled should:

e Use select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT_IF_LOCALE and possibly select BR2_PACKAGE_L
if BR2_NEEDS_GETTEXT_IF_ LOCALE, if libintl is also needed

* Use $(1f $(BR2_NEEDS_GETTEXT_IF_LOCALE),gettext) in the package DEPENDENCIES variable
11.7 Conclusion
As you can see, adding a software package to Buildroot is simply a matter of writing a Makefile using an existing example and

modifying it according to the compilation process required by the package.

If you package software that might be useful for other people, don’t forget to send a patch to Buildroot developers!

The Buildroot user manual
31/32

Chapter 12

Frequently Asked Questions

12.1 The boot hangs after Starting network. ..

If the boot process seems to hand after the following messages (messages not necessarily exactly similar, depending on the list
of packages selected):

Freeing init memory: 3972K

Initializing random number generator... done.
Starting network...
Starting dropbear sshd: generating rsa key... generating dsa key... OK

then it means that your system is running, but didn’t start a shell on the serial console. In order to have the system start a shell on
your serial console, you have to go in the Buildroot configuration, System configuration, and modify Port to run a
getty (login prompt) onandBaudrate to use asappropriate. This will automatically tune the /etc/inittab
file of the generated system so that a shell starts on the correct serial port.

12.2 module-init-tools fails to build with cannot find -Ic

If the build of module—-init-tools for the host fails with:

/usr/bin/ld: cannot find -lc

then probably you are running a Fedora (or similar) distribution, and you should install the glibc—static package. This is
because the module—init-tools build process wants to link statically against the C library.

The Buildroot user manual
32/32

Chapter 13

Appendix

13.1 Makedev syntax documentation

The makedev syntax is used across several places in Buildroot to define changes to be made for permissions or which device files
to create and how to create them, in order to avoid to call mkdnod every now and then.

This syntax is derived from the makedev utility, and a more complete documentation can be found in the package /makedevs/READV
file.

It takes the form of a line for each file, with the following layout:

| name | type | mode | uid | gid | major [minor start inc count

There is a few non-trivial blocks here:

* name is the path to the file you want to create/modify

* type is the type of the file, being one of :

f: aregular file

— d: adirectory

— c: acharacter device file
— b: ablock device file

— p: anamed pipe

* mode, uid and gid are the usual permissions stuff
* major and minor are here for device files

e start, inc and count are when you want to create a whole batch of files, and can be reduced to a loop, beginning at
start, incrementing its counter by inc until it reaches count
Let’s say you want to change the permissions of a given file, using this syntax, you will need to put:

/usr/bin/foobar f 644 0 0 = — - _ _

On the other hand, if you want to create the device file /dev/hda and the corresponding 15 files for the partitions, you will
need for /dev/hda:

/dev/hda b 640 0 0 3 0 0 0 =

and then for device files corresponding to the partitions of /dev/hda, /dev/hdaX, X ranging from 1 to 15:
/dev/hda b 640 0 0 3 1 1 1 15

	About Buildroot
	Getting Buildroot
	Using Buildroot
	Configuration and general usage
	Offline builds
	Building out-of-tree
	Environment variables
	Complying with opensource licenses
	Complying with the Buildroot license

	Customization
	Customizing the generated target filesystem
	Customizing the Busybox configuration
	Customizing the uClibc configuration
	Customizing the Linux kernel configuration
	Customizing the toolchain
	Using the external toolchain backend
	Using the internal Buildroot toolchain backend
	Using the Crosstool-NG backend

	Understanding how to rebuild packages
	How Buildroot works
	Using the generated toolchain outside Buildroot
	Using an external toolchain
	Using ccache in Buildroot
	Location of downloaded packages
	Adding new packages to Buildroot
	Package directory
	Config.in file
	The .mk file

	Infrastructure for packages with specific build systems
	generic-package Tutorial
	generic-package Reference

	Infrastructure for autotools-based packages
	autotools-package tutorial
	autotools-package reference

	Infrastructure for CMake-based packages
	cmake-package tutorial
	cmake-package reference

	Manual Makefile
	Gettext integration and interaction with packages
	Conclusion

	Frequently Asked Questions
	The boot hangs after Starting network…
	module-init-tools fails to build with cannot find -lc

	Appendix
	Makedev syntax documentation

